Full Publication List

$: co-first authors; #: co-corresponding authors

2021 – now

  1. Inhibition of the proton-activated chloride channel PAC by PIP2
    Mihaljević L$, Ruan Z$, Osei-Owusu J, Lü W#, Qiu Z# (2023) eLife 12:e83935.
  2. Molecular mechanism underlying desensitization of the proton-activated chloride channel PAC
    Osei-Owusu J$, Ruan Z$, Mihaljević L, Matasic D, Chen KH, Lü W#, Qiu Z# (2022) eLife 11:e82955.
  3. Molecular interplay of an assembly machinery for nitrous oxide reductase
    Müller C$, Zhang L$, Zipfel S, Topitsch A, Lutz M, Eckert J, Prasser B, Chami M, Lü WDu J#, Einsle O# (2022) Nature 608:626–631.
  4. Molecular determinants of pH sensing in the proton-activated chloride channel
    Osei-Owusu J, Kots E, Ruan Z, Mihaljević L, Chen KH, Tamhaney A, Ye X, Lü W, Weinstein H, Qiu Z (2022) PNAS 119(31):e2200727119.
  5. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition
    Ruan Z$, Haley E$, Orozco IJ$, Sabat M, Myers R, Roth R, Du J#Lü W# (2021) Nature Structural & Molecular Biology 28:604–613.
  6. Mechanism of gating and partial agonist action in the glycine receptor
    Yu J$, Zhu H$, Lape R, Greiner T, Du JLü W, Sivilotti L#, Gouaux E# (2021) Cell 184:957–968.
  7. Proton-activated chloride channel PAC regulates endosomal acidification and transferrin receptor-mediated endocytosis
    Osei-Owusu J, Yang J, Leung KH, Ruan Z, Lü W, Krishnan Y, Qiu Z (2021) Cell reports 34(4):108683.

2016 – 2020

  1. Structures and pH-sensing mechanism of the proton-activated chloride channel
    Ruan Z$, Osei-Owusu J$Du J, Qiu Z#Lü W# (2020) Nature 588:350–354.
  2. Structures of human pannexin 1 reveal ion pathways and mechanism of gating
    Ruan Z, Orozco IJ, Du J#Lü W# (2020) Nature 584:646–651.
  3. The N-terminal domain in TRPM2 channel is a conserved nucleotide binding site
    Lü W, Du J (2020) Journal of General Physiology 152(5).
  4. A structural overview of the ion channels of the TRPM family 
    Huang Y, Fliegert R, Guse AH, Lü W#Du J# (2020) Cell Calcium 85:102111.
  5. The structures and gating mechanism of human calcium homeostasis modulator 2
    Choi W$, Clemente N$, Sun W., Du J#, Lü W# (2019) Nature 576:163–167.
  6. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel
    Huang Y, Roth B, Lü W#Du J# (2019) eLife 8:e50175.
  7. Expression and purification of the human lipid-sensitive cation channel TRPC3 for structural determination by single-particle cryo-electron microscopy
    Haley E$, Choi W$, Fan C, Sun W, Du J, Lü W (2019) JoVE 7(143):e58754.
  8. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium
    Huang Y, Winkler PA, Sun W, Lü W#Du J# (2018) Nature 562:145–149.
  9. Structure of the human lipid-gated cation channel TRPC3
    Fan C$, Choi W$, Sun W, Du J#Lü W# (2018) eLife 7:e36852.
  10. Electron cryo-microscopy structure of a human TRPM4 channel
    Winkler PA$, Huang Y$, Sun W$Du JLü W# (2017) Nature 552:200–204.
  11. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation
    Lü W$, Du J$,Goehring A, Gouaux E (2017) Science 335:6331.
  12. X-ray structures define human P2X(3) receptor gating cycle and antagonist action
    Mansoor SE, Lü W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) Nature 538:66–71.

2010 – 2015

  1. Glycine receptor mechanism elucidated by electron cryo-microscopy
    Du J$Lü W$, Wu S, Cheng Y, Gouaux E (2015) Nature 526:224–226.
  2. Structural and functional studies of NirC from Salmonella typhimurium
    Rycovska-Blume A, Lü W, Andrade SL, Fendler K, Einsle O (2015) Methods in Enzymology Vol. 556, 475–497.
  3. Structures of NMDA receptor reveal subunit arrangement and pore architecture
    Lee CH$Lü W$, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) Nature 511:191–197.
  4. The formate/nitrite transporter family of anion channels
    Lü W, Du J, Schwarzer N, Wacker T, Andrade SL, Einsle O (2013) Biological chemistry 394(6):715–27.
  5. Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium
    Lü W, Schwarzer NJ, Du J, Gerbig-Smentek E, Andrade SL, Einsle O (2012) PNAS 109:18395–18400.
  6. The formate channel FocA exports the products of mixed-acid fermentation
    Lü WDu J, Schwarzer NJ, Gerbig-Smentek E, Einsle O, Andrade SL (2012) PNAS 109:13245–13259.
  7. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells
    Guttenberg G, Hornei S, Jank T, Schwan C, Lü W, Einsle O, Papatheodorou P, Aktories K (2012) Journal of Biological Chemistry 287(30):24929–40
  8. Mechanism of Disruption of the Amt-GlnK Complex by PII-Mediated Sensing of 2-Oxoglutarate
    Maier S, Schleberger P, Lü W, Wacker T, Pflüger T, Litz C, Andrade SL (2011) PLOS ONE 6(10):e26327.
  9. Active-site remodeling in the bifunctional fructose-1,6-biphosphate aldolase/phosophotase
    Du J$, Say RF$Lü W, Fuchs G, Einsle O (2011) Nature 478:534–537.
  10. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi α-toxin
    Guttenberg G$, Papatheodorou P$, Genisyuerek S, Lü W, Jank T, Einsle O, Aktories K (2011) Journal of Biological Chemistry 286(17):14779–14786.
  11. pH-dependent gating in a FocA formate channel
    Lü WDu J, Wacker T, Gerbig-Smentek E, Andrade SL, Einsle O (2011) Science 332:352–354.
  12. Cooperative binding of MgATP and MgADP in the trimeric PII protein GlnK2 from Archaeoglobus fulgidus
    Helfmann S, Lü W, Litz C, Andrade SL (2010) Journal of Molecular Biology 402(1):165–177
  13. Structural Basis of the Action of Glucosyltransferase Lgt1 from Legionella pneumophila
    Lü W, Du J, Stahl M, Tzivelekidis T, Belyi Y, Gerhardt S, Aktories K, Einsle O (2010) Journal of Molecular Biology 396(2):321–331.